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To discuss the gapless spin-liquid-like behavior of the second-layer solid-phase 3He adsorbed on graphite,
we study a spin-1/2 Heisenberg model on a triangular lattice with two kinds of superexchange couplings due
to the corrugation effects from the first-layer by using finite temperature Lanczos method and high-temperature
expansions. In some parameter region, it is found that this model can be expressed by an effective Hamiltonian
with two different energy scales consisting of kagomé Heisenberg model and triangular Heisenberg model. We
find that this effective Hamiltonian well reproduces the experimental behaviors such as the double-peak
structure and the low-temperature linear-T behavior of the specific heat as well as the excess enhancement of
the spin susceptibility at low temperatures.
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Resonating valence bond �RVB� state, considered to be a
typical spin liquid state, was first proposed by Anderson for
the Heisenberg model on a triangular lattice.1 Since then, the
effect of geometrical frustration and possibility of spin liquid
states in strongly correlated systems have been long standing
problems in condensed-matter physics.2 In general, frustra-
tion suppresses conventional long-range orders such as anti-
ferromagnetism and charge order and lowers the transition
temperatures in many cases. Recently several materials have
been found to exhibit spin-liquid-like behavior without any
trivial phase transition.

3He atoms adsorbed on a graphite are considered to form
an ideal two-dimensional system with nuclear spin S=1 /2.3

In the registered phase of the second layer of 3He, or the
so-called 4/7 phase, 3He atoms on a first layer of 3He or 4He
or on a bilayer of HD form a triangular lattice. The simplest
model for this system is, thus, the Heisenberg model on a
triangular lattice. Specific heat measurement of this system
shows a double peak structure and behaves as CV�T below
the lower peak.3 However, these behaviors contradict the the-
oretical results for the simple triangular Heisenberg model,
i.e., the stabilization of 120° antiferromagnetic long range
order4 and the spin-wave-like temperature dependence of
specific heat: CV�T2 at low temperature below a single
peak.5–7 The experimentally observed behavior of CV�T in-
dicates the absence of long-range order. Furthermore, NMR
experiment8 shows that the magnetization, which corre-
sponds to the uniform spin susceptibility, has an enhance-
ment from Curie-Weiss laws at low temperatures and in-
creases gradually down to about 10 �K without any signals
of phase transition nor spin gap. These spin-liquid-like be-
haviors have not been understood theoretically. In this paper,
we propose a mechanism which explains both behaviors of
specific heat and uniform spin susceptibility.

So far, two spin models have been employed to study this
system. One is to start from a kagomé lattice.9 In this ap-
proach, the triangular lattice of 3He is divided into two parts
�Fig. 1�, namely, a kagomé lattice �called A site in the fol-
lowing� and the remaining non-kagomé lattice �called B site�.

B sites form a triangular lattice by themselves. The interac-
tion with the first layer gives different potential energies to
the A and B sublattices. The difference of potential energies
leads to the inequivalence of Heisenberg superexchange cou-
plings J� �between A and B site� and J �between the A sites�.
If we assume that the Heisenberg superexchange coupling,
J�, can be neglected compared with the coupling, J, the sys-
tem is approximated as a Heisenberg model on the kagomé
lattice with only the A sites. In fact, this approach was
adopted in Ref. 10 to explain the origin of missing entropy;
that is, the early specific heat measurement had shown that
the entropy of the second layer 3He falls short of the ex-
pected value of kB ln 2. However, precise measurement
down to low temperatures revealed that there are no missing
entropy.3 This means that the effect of J� should be taken
into account to explain the overall specific-heat measure-
ment. Although the effect of J� has been studied by several
groups,11–14 they are not sufficient to explain the experimen-
tal results.

The second approach is to use multiple exchange
interactions.15–20 In this model, the competition between the
nearest-neighbor ferromagnetic exchange coupling and the
four-spin ring exchange interactions tends to prevent a for-
mation of magnetic order. Although double peak structure of
specific heat can be understood in this model and interesting
phases are predicted theoretically,16,19 the exact diagonaliza-
tion study18 shows that the state without magnetic order has
a finite spin gap, which contradicts with the gapless-like be-
havior observed in the NMR experiment. The effect of mul-
tiple exchange interactions has also been studied outside the
4/7 phase.20 Once mobile vacancies are introduced to the 4/7
phase, the difference between the A and B sites becomes
smeared out and the ring exchange interactions will become
important. In this paper, we focus on the 4/7 phase without
mobile vacancies emphasizing the effect of the difference of
A and B sites, compared with the ring exchange interactions,
to study the spin-liquid-like behavior. In the parameter re-
gion where coupling between the A and B sites can be treated
as a perturbation, we derive an effective Hamiltonian and
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find that this effective Hamiltonian clearly explains the spe-
cific heat and NMR experiments of the second layer 3He at
low temperatures.

With the four-spin ring exchange interactions, the Hamil-
tonian is given as

H = J�
�ij�

Si · S j + J��
�ij�

Si · S j + K�
�

�Pijkl + Pijkl
−1 � , �1�

where the first summation �ij� is taken over the bonds be-
tween the A sites �the kagomé lattice� and the second sum-
mation �ij�� over the bonds between the A and B sites �Fig.
1�. The last summation is taken over all the plaquettes con-
sisting of the nearest-neighbor bonds and Pijkl represents the
four-spin ring exchange operator. Note that three-spin ring
exchanges, which can be expressed as ferromagnetic two-
spin Heisenberg interaction, are included in J and J�. Note
also that, the three and four-spin ring exchange interactions
are equivalent in all the plaquettes even with the corrugation
effect. Thus, the model parameter J� /J in this effective
Hamiltonian can take small or even negative values depend-
ing on the ratio of the Heisenberg and three-spin ring ex-
change interactions. Hereafter, we will set the Boltzmann
factor kB equal to unity.

Firstly, we consider the case with K=0. The effect of K
will be briefly discussed later. In the case of K=0 and J� /J
=0, the model is decoupled into the Heisenberg model on the
kagomé lattice �A sites� and free spins on the remaining sites
�B sites�, and the model becomes a uniform Heisenberg
model on the triangular lattice at J� /J=1. First we calculate
the specific heat and spin susceptibility by using the finite
temperature Lanczos method �FTLM�21 in the two types of
24-site clusters shown in Fig. 1. To reduce boundary effects
at low temperatures, we take average over boundary
conditions.22 Fig. 2�a� shows the obtained results of the spe-
cific heat, CV, for several values of J� /J. For the case of
kagomé lattice �J� /J=0�, CV shows a double-peak structure.
The sharp peak at low temperature �T /J�0.1� indicates the
existence of highly degenerate low-lying states. However,
the exact diagonalization study23 has shown that the kagomé
Heisenberg model has a finite spin gap, so that this does not
explain the gapless-like behavior of spin excitations ob-
served in the magnetization experiment of 3He.

As J� /J increases, the double-peak structure gradually

changes into a single-peak with a shoulder. Here, we note
that the behavior of CV for J� /J�0.2 is qualitatively differ-
ent from that of J� /J�0.2. CV is almost independent of J� at
high temperatures for J� /J�0.2. This indicates that the en-
tropy due to the B-site spins is released only at low tempera-
tures and that the thermodynamic behavior is mostly deter-
mined by the kagomé Heisenberg model in a broad
temperature range. The degeneracy of B-site spins is lifted
with a small energy scale. For J� /J�0.2, on the other hand,
CV depends on J� in a whole temperature range.

Let us compare the results of the FTLM with those ob-
tained in the high-temperature expansion �HTE�.7 The inset
of Fig. 2�a� shows a comparison of HTE �black solid
line�5,7,24–26 and FTLM at J� /J=0 and 1. To extrapolate the
high-temperature series of specific heat down to low tem-
peratures, we use the Padé approximation of S�E�p.7,27 Here,
p determines the low temperature behavior as S�T�=T1/�p−1�.
In the triangular lattice, we assume the 120° Néel order and
take p=3 /2.7 In the kagomé lattice, however, due to the
many low-lying singlet excitations, the thermodynamic prop-
erties at low temperatures have not been clarified yet. Here,
we assume S�T��T and take p=2. The assumption of this
low-temperature property does not change the following dis-
cussions. The differences caused by other choices of p have
been discussed in Ref. 24. As shown in the inset of Fig. 2�a�,
HTE results coincide with FTLM results except for the low-
temperature peak in the case of the triangular lattice �J� /J
=1�. In particular, at low temperatures in the kagomé lattice,
both methods consistently show the double peak structure.

FIG. 1. Triangular lattice with two exchange couplings used in
this study. Thin solid lines represent the bonds between A sites
forming a kagomé lattice, and thin dashed lines represent the bonds
between A sites and the remaining sites �B sites�. B sites form a
triangular lattice by themselves. The bold solid lines indicate two
24-site clusters used in the exact diagonalization study.
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FIG. 2. �Color online� �a� Specific heat, CV, and �b� inverse of
spin susceptibility, �−1, at J� /J=0.0, 0.2, 0.6, and 1.0 �from bottom
to top� on the two types of 24-site clusters obtained in the FTLM.
Insets of �a� and �b� show the comparison of HTE �black solid line�
and FTLM results at J� /J=0.0 and 1.0 in the same temperature
range, i.e., 0�T /J�2.0. Error bars of the HTE results are deter-
mined from the scattering of various Padé approximations.
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This guarantees the reliability of the present FTLM espe-
cially for small values of J�. On the other hand, the differ-
ence between the FTLM and HTE method in the triangular
lattice probably indicates that 24-site cluster is not appropri-
ate to treat the antiferromagnetic 120° structure. In fact, low-
energy excitation in the FTLM result shows gapful behavior
rather than the expected spin-wave behavior.

Next let us discuss spin susceptibility, �, defined by �
=�ij�Si

z ·Sj
z� /T. Figure 2�b� shows �−1 for several values of

J� /J obtained by the FTLM. In this case, the FTLM results
coincide very well with HTE results as shown in the inset of
Fig. 2�b�, although the HTE method cannot be extended to
lower temperatures as T /J�0.3. For the case of kagomé
lattice �J� /J=0�, � diverges as the temperature approaches
zero �T→0�, due to the free spins in the B sites. Further-
more, we find that � shows an enhancement from the Curie-
Weiss law at low temperatures, i.e., �−1 becomes smaller
than the high-temperature Curie-Weiss behavior, �−1

= �T+�W� /C, where �W and C represent the Weiss tempera-
ture and Curie constant, respectively. This behavior can also
be attributed to the free spins on the B sites. The behavior of
�−1 for J� /J�0.2 can be understood as a continuation of
J� /J=0 except for the very low temperatures. In this region,
� still shows an enhancement from the Curie-Weiss law, as
shown in Fig. 2�b�. This nearly-free-spin behavior of B sites
is consistent with the specific heat behavior in Fig. 2�a�,
where the degeneracy of the B-site spins is lifted with a small
energy scale. Therefore, both specific heat and magnetic sus-
ceptibility give a consistent result with the experiments for
J� /J�0.2.

Motivated by the consistency with the experiments, we
focus on the case of J� /J�0.2 in the following. At J� /J=0,
spins on the kagomé lattice �A site� and B site are decoupled.
Thus, the effect of J� can be treated as a perturbation. Since
the kagomé Heisenberg model probably has a small but finite
spin gap,23 we assume that the perturbation only lifts the
degeneracy of the free spins on the B sites and has little
effect on the kagomé Heisenberg spins. This perturbative ef-
fect of the lowest order can be expressed by an effective
exchange coupling, Jeff, between the free spins. To extract
Jeff, we study a cluster with 27-sites with open boundary
conditions as shown in Fig. 3 and diagonalize the Hamil-
tonian using exact diagonalization method. In the small-J�
region, the low-energy spectrum of this system can be ap-

proximated by the three-site Heisenberg model with the ex-
change coupling, Jeff. Then the energy of ground state and
first excited states of these three spins become E0=− 3

4Jeff and
E1= 3

4Jeff, respectively. Therefore, one can extract the value
of Jeff from E1−E0 obtained by exact diagonalization. The
energies of the ground state and the first excited state are
shown in Fig. 3 as a function of J� /J. The obtained ground
state and the first excited states are both spin quartets with
S=1 /2 and S=3 /2, respectively, justifying the approxima-
tion by three-site Heisenberg model. Therefore, the energy
difference in Fig. 3 corresponds to E1−E0= 3

2Jeff. By fitting
the energy difference in a quadratic function of J� /J, we
obtain E1−E0=5.04J�2 /J. From this, we estimate the effec-
tive coupling, Jeff, as Jeff=3.4J�2 /J.

As discussed above, we consider that, at least in the small
J� /J region, the Hamiltonian �1� can be decoupled into
kagomé Heisenberg model with the interaction, J, and trian-
gular Heisenberg model with the effective interaction, Jeff.
We assume that the 4/7 phase of 3He belongs in this region
and use this effective Hamiltonian to describe the low-
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FIG. 4. �Color online� �a� Specific heat, �b� entropy, and �c� spin
susceptibility for the effective Hamiltonian, Eq. �2�, at Jeff /J=0.01,
0.02 and 0.03. For the spin susceptibility, Curie-Weiss law fitted at
high temperatures is also shown by a black solid line.
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FIG. 3. Energies of the ground state and first excited state in the
27-site cluster shown in the inset. Data are fitted by quadratic
functions.
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temperature behaviors. Then, the free energy of this effective
Hamiltonian becomes

Ftot =
1

4
Ftri�Jeff� +

3

4
Fkag�J� , �2�

where Ftri�J�, Fkag�J�, and Ftot are the free energies of the
triangular Heisenberg model, kagomé Heisenberg model, and
the total model Hamiltonian, respectively. For Ftri�J� and
Fkag�J�, we use the HTE results which are shown in Fig. 2.
Figure 4 shows the specific heat, entropy and spin suscepti-
bility obtained in this effective Hamiltonian at Jeff /J
=0.01–0.03. One can see that the specific heat shows a
double-peak structure for Jeff /J=0.02–0.03. In general, there
should be three peaks in the specific heat; two peaks from the
kagomé Heisenberg model and one peak from the triangular
Heisenberg model with Jeff. However, in this parameter
range, the lower peak of the kagomé Heisenberg model and
that of the triangular Heisenberg model are in the same tem-
perature region. Therefore, these two peaks cannot be distin-
guished any more. Note that the differences of CV �and S�
between different values of Jeff /J purely come from the con-
tributions of the triangular lattice. �There is no contribution
to CV at finite temperatures when Jeff=0.� We expect that the
second layer 3He corresponds to the case with Jeff /J
=0.02–0.03 where the specific heat has only two peaks.
From the temperature dependence of entropy shown in Fig.
4�b�, we can see that the entropy from the triangular Heisen-
berg model is released around the lower peak of CV. Note
that it is rather difficult to conclude the behavior of CV�T
below the lower peak, since the low-energy structure of CV is
a combination of kagomé and triangular Heisenberg models
within the current temperature range. Nevertheless, we
speculate that a combination of the highly degenerate behav-
ior of CV from the kagomé lattice and the behavior of CV
�T2 from the low-temperature triangular lattice can lead to
the linear-T behavior of CV.

The spin susceptibility, �, shown in Fig. 4�c� also seems
consistent with the experiments. At low temperatures, � ex-
ceeds the Curie-Weiss law fitted at high temperatures �black
solid line�. This is because the spin susceptibility of the tri-
angular lattice, which has a small Weiss temperature, be-
comes dominant at low temperatures. Note that this charac-
teristic feature of the spin susceptibility is described by the
superposition of two Curie-Weiss curves with different Curie
constants and Weiss temperatures. The saturation of � at low
temperatures is determined by the triangular Heisenberg
model, since the kagomé Heisenberg model has a finite spin
gap as discussed before. Actually, the saturation occurs
around T /Jeff=0.2–0.3, which is far smaller than J, consis-
tent with experiments.8 The saturation value depends on Jeff.

Finally, we discuss the effect of four-spin ring exchange
interactions, K. This term can be rewritten by the spin opera-
tors as

P1234 + P1234
−1 = �

1�i�j�4
Si · S j + 4��S1 · S2��S3 · S4� + �S1 · S4�

��S2 · S3� − �S1 · S3��S2 · S4�� . �3�

If the effect of this term is small, the mean-field treatment
such as

�S1 · S2��S3 · S4� � �S1 · S2�S3 · S4 + �S3 · S4�S1 · S2 − �S1 · S2�

��S3 · S4� �4�

will be valid and all the terms can be represented as two-spin
exchange interactions. Furthermore, since the coefficients of
the exchange coupling terms on the next-nearest-neighbor
sites are small compared to those on the nearest-neighbor
sites,28 the effect of the ring exchange interaction can be
absorbed in the effective Jeff and J in the first approximation.
As far as K is not so large, we speculate that the effect
beyond this approximation can be treated perturbatively and
that the present results do not change qualitatively. If K is
larger than about J /10, it has been discussed that a different
state such as resonating valence bond state can be
realized.18,20 The effect of the long-range exchange interac-
tions can also be important as discussed in the classical
limit29 and should be clarified in future studies.

The characteristic property of this effective model is the
magnetic response. If the present assumption is valid, the
spins on the triangular lattice �B sites� highly respond to the
applied magnetic field since the effective coupling, Jeff, is
small compared to J. This means that in the intermediate
magnetic field there is a characteristic region where 1/4 of
total spins are polarized. In addition to this possible structure
at 1/4, magnetization curve of the effective model will have
a plateau at 1/2 �=1 /4+3 /4�1 /3� of the full magnetization
since kagomé lattice Heisenberg model itself has a magneti-
zation plateau at 1/3 of its full magnetization.30 These two
characteristic regions in the magnetization curve is consistent
with the recent experiment.31

Although the low-temperature behaviors of CV and � in
the present model agree well with the experiments, there is a
discrepancy between theory and experiment. In the
experiment,3 the specific heat at high-temperature region de-
cays slowly and does not behave as CV�T−2, while within
the usual spin Hamiltonians, CV always behaves as CV
�T−2. In fact, the high-temperature behavior of CV in Fig.
4�a� is CV�T−2. In order to understand the experimentally
observed behavior of CV, it will be necessary to take into
account the effect of mass degrees of freedom32 such as the
interstitial sites in the second layer of 3He and/or the excita-
tion to the third layer.

To summarize, we analyzed the 4/7 phase of 3He ad-
sorbed on graphite using the Heisenberg model on the lattice
that interpolates between the triangular and the kagomé lat-
tices. We found that at J� /J�0.2, this model can be decou-
pled into two Hamiltonians with different energy scales and
that this decoupling explains the experimental properties
such as the double peak and the low-temperature linear-T
behavior of the specific heat as well as the excess enhance-
ment of the spin susceptibility at low temperatures.
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